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We examine multiple techniques for extracting information from ARPES data, and test them against simu-
lated spectral functions for electron-phonon coupling. We find that, in the low-coupling regime, it is possible
to extract self-energy and bare-band parameters through a self-consistent Kramers-Kronig bare-band fitting
routine and verify the momentum independence of the self-energy along the quasiparticle dispersion. We also
show that the effective coupling parameters deduced from the renormalization of quasiparticle mass, velocity,
and spectral weight are momentum dependent and, in general, distinct from the true microscopic coupling; the
latter is thus not readily accessible in the quasiparticle dispersion revealed by ARPES.
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Angle-resolved photoemission spectroscopy �ARPES� is a
tool which, experimental difficulties aside, provides access to
the electron-removal part of the momentum-resolved spectral
function A�k ,��.1 This quantity is an extremely rich
source of information since it depends on both the
single-particle electronic dispersion �k

b �the so-called
“bare-band”� as well as the quasiparticle self-energy
��k ,��=���k ,��+ i���k ,��, whose real and imaginary
parts account for the energy renormalization and lifetime of
an electron in a many-body system. The single-particle spec-
tral function is generally written in the form

A�k,�� = −
1

�

���k,��
�� − �k

b − ���k,���2 + ����k,���2 . �1�

In the case of k-independent self-energies, methods based on
the Lorentzian fit of momentum distribution curves �MDCs,
i.e., constant energy cuts of A�k ,��� have been used to ex-
tract ����� and ����� from the spectral function measured
by ARPES, and eventually to infer information on the nature
and strength of the interactions dressing the quasiparticles in
a variety of complex systems.1–6 However, the question of
the validity of these approaches is still a pressing one be-
cause most methods hinge on some assumption and/or ap-
proximation for the bare-band �k

b. More fundamental, for in-
stance, in the case of electron-boson coupling, the commonly
assumed link between coupling strength and quasiparticle
renormalization, through the so-called mass-enhancement
factor �1+��, is at best merely phenomenological and its
general validity needs verification. This calls for a method-
ological study based on a well-behaved and momentum-
independent model self-energy.

Here we investigate the possibility of extracting
momentum-independent self-energies from A�k ,��, without
any a priori knowledge of the bare-band �k

b. We will test the
performance of our approach on the spectral function gener-
ated with the high-order momentum-average approximation
MA�n�,7,8 for the single Holstein polaron model:9 momentum-
independent coupling between an optical phonon and a filled
one-band system of noninteracting electrons. This is a highly
oversimplified approach in which strong interactions are not
included as opposed to, e.g., Ref. 10, and even the effect of

the Fermi sea is not accounted for �as there is no well-
defined chemical potential, the latter will be positioned at the
top of the first electron-removal state�. Although not appli-
cable to correlated electron systems, the plain Holstein
polaron9 is chosen as the minimalistic model to study the
electron-phonon coupling problem. Since the MA�n� has been
shown to be extremely accurate everywhere in parameter
space,8 it will allow us to study A�k ,�� over a broad range of
electron-phonon coupling.

Before delving into the detailed self-energy analysis, let
us illustrate the model Hamiltonian and emphasize some
general aspects, relevant to the phenomenological descrip-
tion of spectral functions in terms of effective coupling and
renormalization parameters. Limiting ourselves to the one-
dimensional case for simplicity �higher dimensions were
found not to change the results qualitatively�, we have used
the MA�n� approximation to obtain self-consistent A�k ,��
with highly accurate momentum-independent ����, from the
Holstein Hamiltonian,

H = �
k

�k
bck

†ck + ��
Q

bQ
† bQ +

g
�N

�
k,Q

ck−Q
† ck�bQ

† + b−Q� .

�2�

Its terms describe, in order, an electron with dispersion
�k

b�−2t cos�ka�, an optical phonon with energy � and mo-
mentum Q, and the on-site electron-phonon linear coupling
�for N sites with periodic boundary conditions; ck

† �ck� and bQ
†

�bQ� are the usual electron and phonon creation �annihila-
tion� operators�. This leads to a dimensionless effective cou-
pling ��g2 /2t�. For this Brief Report, we set a=�=1 and
t=50 meV, such that the bandwidth is 200 meV and the
Brillouin zone is 2� Å−1 wide; also note that an additional
constant 1 meV full width at half maximum Lorentzian
broadening is applied, similar to an impurity scattering, to
allow resolving the sharpest features in A�k ,��.

The spectral function calculated with MA�1� for
�=50 meV and �=0.5 is presented as a false-color plot in
Fig. 1�a�; as one can see, it deviates remarkably from the one
of the uncoupled bare-band �k

b. The electron-removal spec-
trum is now comprised of a polaron quasiparticle band �k

q

�i.e., the lowest-energy bound state of the electron-phonon
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coupled system�, and a continuum of excitations starting at
an energy � below the top of the polaron band and roughly
following the original location of the bare-band �k

b. Based on
these simulated data and on the precise knowledge of the
input value of �, it is possible to gauge the appropriateness
of estimating the electron-phonon coupling strength from the
observed renormalization of band velocities, masses, and
quasiparticle coherence, as often done in the interpretation of
ARPES results.1 To this end, in Figs. 1�b� and 1�c� we
present the quasiparticle and bare-band velocities, vk

q and vk
b,

and the inverse masses, 1 /mk
q and 1 /mk

b �see caption of Fig. 1
for definitions�. The corresponding ratios vk

b /vk
q and mk

q /mk
b,

as well as the inverse quasiparticle coherence 1 /Zk
q �see

again caption of Fig. 1�, are progressively larger than one the
stronger the coupling strength; these quantities are usually
equated to the renormalization or mass-enhancement factor
�1+��, providing a potential path to the quantitative estima-
tion of the electron-phonon coupling strength.11,12

As shown in Fig. 1�d�, the velocity, mass, and spectral
weight quasiparticle renormalizations are functions of k.
While in general one could expect these quantities to all be
distinct, we find that vk

b /vk
q=1 /Zk

q at all k, which is a direct
consequence of the k independence of the self-energy de-
rived from the Holstein Hamiltonian: by Taylor expanding
��k ,�� in the vicinity of the quasiparticle pole, i.e.,
�=�k

q+	�, one can approximate the Green’s function as
G�k ,���Zk / ��−�k

q� in terms of the quasiparticle coherence
Zk

q=1 / �1−���k ,�� /�� 	�=�k
q�, and obtain for the quasiparti-

cle velocity vk
q=Zk

q�vk
b+���k ,�� /�k 	�=�k

q�; the latter reduces
to vk

q=Zk
qvk

b if �� /�k=0. For the mass renormalization, we
obtain mk

q /mk
b=1 /Zk

q only for k=0 and �, which is simply a
consequence of the fact that at the band extrema the veloci-
ties are zero and the corresponding rate of change away from
the extrema has to follow the acceleration �see Fig. 1�d� and
its inset; the horizontal dashed line emphasizes the diver-
gence of mk

q /mk
b due to the vanishing of 1 /mk

q�. Most impor-
tantly, vk

b /vk
q, mk

q /mk
b, and 1 /Zk

q cannot be compared directly
to the momentum-independent renormalization factors � /Wq

and �1+��, obtained from the quasiparticle bandwidth Wq

and the dimensionless coupling �=g2 /2t� in our model

�Fig. 1�d�, inset�. Although coincidences in values can be
observed at some electron momenta, these are purely circum-
stantial and cannot be generalized.

The results in Fig. 1 demonstrate that in general one can-
not directly extract a quantitative value for the coupling
strength � from the observed renormalization of quasiparticle
velocity, mass, and coherence �and this without even consid-
ering further complications originating from the electron-
correlation-driven renormalization of electron-phonon cou-
pling in real materials5,13�. If one was to do that, the
extracted value would vary with the chosen observable and
the specific k value, making any conclusion arbitrary �e.g., at
k=� these renormalizations overestimate � by a factor of
almost 100�. One may wonder, however, if any of these
quantities scaled as �1+�� upon increasing � so that if not
the exact value at least the trend of the coupling strength
could be captured, for example, in an experiment performed
as a function of doping. In Fig. 2, we follow each of these
quantities and the quasiparticle bandwidth as a function of �,
contrasted against �1+��. For momentum-dependent quanti-
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FIG. 1. �Color online� �a� A�k ,�� calculated within MA�1� for �=50 meV and �=0.5; the quasiparticle dispersion �k
q and the bare band

�k
b are also shown. �b� Quasiparticle and bare-band velocities, vk

q and vk
b, and �c� corresponding inverse masses, 1 /mk

q and 1 /mk
b, according

to the definitions vk=��k /�k and 1 /mk=�2�k /�k2. �d� Momentum-dependent quasiparticle renormalization as obtained from vk
b /vk

q, mk
q /mk

b,
and the inverse quasiparticle coherence 1 /Zk

q, where Zk
q=
qA�k ,��d� is the quasiparticle-only integrated spectral weight; in the inset, these

quantities are compared near k=0 to the renormalization factors � /Wq and �1+��, obtained from quasiparticle bandwidth Wq and dimen-
sionless coupling �=g2 /2t� in our model.
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FIG. 2. �Color online� Renormalization parameters defined as in
Fig. 1, plotted vs the dimensionless coupling �=g2 /2t�. Note that
the noise in v and 1 /Z at k=ki originates from the determination of
the inflection point ki.
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ties, we must choose a k value: we plot v0
b /v0

q, m0
q /m0

b, and
1 /Z0

q at k=0 where they all coincide, as well as vki

b /vki

q and
1 /Zki

q at the inflection point k=ki of the quasiparticle band �k
q

where mki

q /mki

b diverges. All quantities deviate dramatically
from �1+�� at large coupling values �e.g., overestimating the
microscopic coupling by a factor of 4 to 8 at �=2�, and are
also rather poor indicators of the coupling strength in the
low-coupling regime ��
1; Fig. 2 inset�. Interestingly, the
inflection point velocity renormalization vki

b /vki

q is linear in �

over a range that scales with the ratio � / t. However, even
this term deviates from �1+�� in a way dependent on the
details of the model, such as the shape of the bare-band �k

b; in
general, it cannot be used for the quantitative estimate of �.

Determining �k
b is a key step also in the attempt of extract-

ing real and imaginary parts of the self-energy from A�k ,��,
which will be the focus of the remainder of this Brief Report.
We analyze A�k ,�� in terms of MDCs at constant energy
�= �̃. Since the self-energy in the present model is k inde-
pendent, i.e., ��̃� and ��̃� are constant, as long as �k

b can be
linearized in the vicinity of the MDC peak maximum at
k=km, the MDC line shape is Lorentzian. Note that the con-
verse is not true: a Lorentzian MDC line shape is not a suf-
ficient condition to conclude �=����,14 although the over-
lap of vk

b /vk
q and 1 /Zk

q �Fig. 1� confirms the k independence
along the quasiparticle dispersion. By Taylor expanding
�k

b about the MDC peak maximum at k=km, i.e.,
�k

b=�km

b +vkm

b · �k−km�+. . ., and noticing that �̃=�km

b +��̃� , we
can rewrite Eq. �1� as

A�̃�k� �
A0

�

�km

�k − km�2 + ��km�2 , �3�

where �km=−��̃� /vkm

b is the half width half maximum of the
Lorentzian MDC and A0=1 /vkm

b =
A�̃�k�dk. If the bare band
is not known it is possible to fit it, within an arbitrary offset,
to any functional form which provides a value and derivative
using a Kramers-Kronig bare-band fitting �KKBF� routine.
This is done by first tracking km and �km for every �̃ through
a Lorentzian fit of the MDC �Eq. �3��, and then choosing �k

b

parameters such that �MDC� � �̃−�km

b and �MDC� �−vkm

b �km

are self-consistent with �KK� and �KK� calculated from the KK
relations,

�KK�,��k,�� = �
1

�
P�

−





��
�MDC�,� �k,��

� − �
. �4�

In our implementation �Fig. 3�, a simple third-order polyno-
mial was used with an initial guess found by fitting MDC
peak maxima. We then used the Levenberg-Marquardt algo-
rithm as implemented in the MPFIT package for IDL to vary
band parameters. We found that the standard sum-of-squares
minimization did not perform as well as a concave-down
function since it placed too much weight on outlying points
far away. In order to evaluate the integrals in Eq. �4� with a
finite region of data, biased inverse polynomial fits where
used to extrapolate tails before a Fourier-based transform
was performed.

The method outlined here varies slightly from techniques
previously described in the literature, which often deal with
data very close to the Fermi energy and generally reduce the
possible functional forms for �k

b substantially.15,16 While
these methods present an exact solution for A�k ,�� based on
a reduced bare band, the present approach imposes no re-
strictions on �k

b �other than it be differentiable near km�, al-
lowing fitting based on a wider variety of bare-band models
and using KKBF to vary �k

b parameters. The results of the
KKBF procedure are presented for �=0.1 in Fig. 3 and show
that, in the low-coupling regime, the found bare band and
self-energies ��MDC� agree well with the known quantities
from our model �as long as the MDC analysis is applicable:
km is far from band extrema where velocities vanish, and
MDC widths are suitably small that the bare band may be
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FIG. 3. �Color online� �a� A�k ,�� calculated within MA�1� for
�=50 meV and �=0.1; also shown are the km path of MDC
maxima, as well as the known bare band and the one found through
the KKBF analysis. �b� and �c� Real and imaginary part of the
self-energy from the model ��known�, the bare-band and MDC fitting
routine ��MDC�, and the KK transform of �MDC� ��KK� � and
�MDC� ��KK� �. In �c�, the MDC ratio results, �ratio� =−�km /A0, are
also shown.
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approximated as linear around km�. Note that the self-
energies are evaluated along the �km , �̃� path of the MDC
maxima, along which the analysis is performed; this path
deviates significantly from either �k

q or �k
b close to the sharper

one- and two-phonon structures �Fig. 3�a��. The reliability of
the results is confirmed by the agreement between �MDC and
�KK over the whole range, which provides an internal self-
consistency check.

Although very satisfactory at low coupling, at larger cou-
pling the results from the KKBF procedure become progres-
sively less accurate. This can be seen already for �=0.5 in
Fig. 4�a�, where �MDC� and �KK� fail to reproduce �known� in
the proximity of the sharp phonon-induced structures ��KK�
has also picked up different offsets in the different flatter
parts of the spectrum, making setting its overall offset diffi-
cult�. For a more comprehensive description of the deviation
of these quantities from �known� upon increasing �, in Fig.
4�b� we present the average of the squared difference at each
km between the estimated and known self-energies versus �:
for both �MDC� and �KK� , this estimate shows a rapid and
consistent increase with �, indicating a failure of the KKBF
analysis and similar methods in the intermediate to strong
electron-phonon coupling regime.

Before concluding, we will point out an alternative, pos-
sibly more practical approach, which allows us to tackle the
problem over a larger range of �, at least for ��. In our
method, determining real and imaginary parts of the self-
energy hinges on finding a proper expression for the bare
band through the KKBF routine. The imaginary part how-
ever, ��̃� =−vkm

b �km, only requires knowledge of vkm

b , and this
can be obtained directly from A�k ,�� in two independent
ways. The first one is through the momentum integral of
A�̃�k� in Eq. �3�, which returns directly A0=1 /vkm

b ; this al-
lows a simple estimate of �� �and equally accurate to KK-
BFs for �=0.1, Fig. 3�c�� from the MDC width/integral ratio
�ratio� =−�km /A0. The second one is through the equivalence
vk

b /vk
q=1 /Zk

q discussed in the context of Fig. 1�d�, and the
possibility of estimating vk

q and Zk
q directly from the data as

the momentum derivative and energy integral of the quasi-
particle band �k

q �Fig. 1�: �MDC� =−vk
q�km /Zk

q. The so-
obtained �ratio� and �MDC� are compared in Fig. 4�a�; although
especially �ratio� deviates strongly from �known� upon increas-
ing � at the sharp phonon-induced features �Fig. 4�b��, the
general behavior is that when �ratio� ��MDC� they also match
�known� almost exactly. Thus, �ratio� and �MDC� can be used to
obtain a precise anchor mesh for �� over a range of energies,
without the critical step of finding the bare band.

In summary we have shown that, at variance with a com-
mon phenomenological practice in the interpretation of
ARPES data, even in the simplest case of electron-phonon
coupling described by the Holstein model it is not possible to
obtain the microscopic coupling strength from the observed
renormalization of quasiparticle coherence, velocity, mass, or
bandwidth �e.g., vki

b /vki

q would overestimate � by a factor of
2, 3, and 8 for �=1, 1.5, and 2�. In this sense, the coupling �
still remains an elusive quantity. Through the KKBF analysis
we can however gain access to bare band and self-energies,
which if properly modeled might provide information on the
nature and strength of the underlying interactions, at least in
the momentum independent, low-coupling regime.
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